Ordinale und Kardinale Nutzentheorie: Unterschied zwischen den Versionen

Aus Mikroökonomie 1
Zur Navigation springen Zur Suche springen
Zeile 34: Zeile 34:
 
+ <math> U(x,y)'=(1-x)+\frac{1}{2}y </math>.
 
+ <math> U(x,y)'=(1-x)+\frac{1}{2}y </math>.
 
- <math> U(x,y)'=2ln(x)+\frac{1}{2}ln(y) </math>.
 
- <math> U(x,y)'=2ln(x)+\frac{1}{2}ln(y) </math>.
- <math> U(x,y)'=x^{2}*\sqrt{y}+5 </math>.
+
- <math> U(x,y)'=x^{2} \sqrt{y}+5 </math>.
- <math> U(x,y)'=2x^{2}*\sqrt{y} </math>.
+
- <math> U(x,y)'=2x^{2} \sqrt{y} </math>.
 
</quiz>
 
</quiz>
  

Version vom 12. Juli 2023, 16:08 Uhr

In der Nutzentheorie wird zwischen Kardinaler und Ordinaler Nutzentheorie unterschieden. Während die Kardinale Nutzentheorie numerische Werte verwendet, um zu beschreiben wie viel besser oder schlechter ein gewisser Nutzen ist, nutzt die ordinale Nutzentheorie die numerischen Werte um zu beschreiben welcher Nutzen größer oder kleiner ist.

Ordinale Nutzentheorie

In der ordinalen Nutzentheorie wird verglichen welcher Nutzen größer oder kleiner ist. Bei einer Nutzenfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U(x,y)=x+y } ergeben x=1 und y=1 einen Nutzen von 2; x=2 und y=2 ergeben einen Nutzen von 4. Der Nutzen vom ersten Güterbündel bringt einen geringeren Nutzen als das zweite Güterbündel . Ein Konsument präferiert dementsprechend das erste Güterbündel gegenüber dem zweiten Bündel. Eine Beschreibung als wie viel besser er das erste Bündel gegenüber dem zweiten Bündel bewertet, lässt sich mit der Ordinalen Nutzentheorie nicht sagen. Bei Indifferenzkurven kann somit lediglich gesagt werden, dass alle Güterkombinationen auf der Indifferenzkurve Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U_{2} } allen möglichen Kombinationen auf der Indifferenzkurve präferiert werden, falls gilt.
Unvollkommene Substitute.png

Ordinale Nutzenfunktionen bringen alle Warenkörbe vom beliebtesten zum unbeliebtesten Warenkorb in eine Rangfolge ("Ordnung").
Es ist jedoch nicht möglich zwischen dem Nutzen verschiedener Konsumenten zu vergleichen. Erfährt Konsument 1 von einem Gut einen Nutzen von 5 und Konsument 2 von demselben Gut einen Nutzen von 6, ist es nicht möglich zu sagen welcher Konsument besser gestellt ist. Der Nutzen von Konsument 1 kann in kein Verhältnis zu dem Nutzen von Konsument 2 gestellt werden.

Ordinale Nutzentorie und monotone Präferenzen

In der ordinalen Nutzentheorie geht es um die Darstellung der Präferenzen in einer Rangordnung, weshalb es möglich ist etwaige Nutzenfunktionen monoton zu transformieren soweit die Rangordnung nicht verändert wird.
Beispiel: Gegeben sei die Nutzenfunktion von oben . Eine monotone Transformation könnte wie folgt aussehen: . Ein Bündel von (x,y)=(2,2) wird auch nach der Transformation gegenüber einem Bündel (x,y)=(1,1) präferiert. Das (x,y)=(1,1) Bündel bringt einmal einen Nutzen von 2 und einmal einen Nutzen von 4. Das (x,y)=(2,2) Bündel bringt einen Nutzen von 4 beziehungsweise 8. 2 < 4 und 4 < 8. Dieses Beispiel zeigt, dass das numerische Nutzenniveau im Grunde lediglich eine Kennzahl zur Einordung im Vergleich mit einem anderen Nutzen dient. Die Präferenzen selbst werden mit einer monoton transformierten Nutzenfunktion unverändert dargestellt.

Kardinale Nutzentheorie

Die kardinale Nutzentheorie wurde vorrangig in der Vergangenheit verwendet. In der kardinalen Nutzentheorie wird dem numerischen Nutzenniveau ein Wert beigemessen. Demnach ist ein Nutzen von 2 nicht nur größer als ein Nutzen von 1, sondern auch doppelt so gut.
In der Abbildung von oben bedeutet dies, dass alle Güterkombinationen auf der Indifferenzkurve als halb so gut angesehen werden als alle Güterkombinationen auf der Indifferenzkurve (angenommen ist doppelt so groß wie ).

MC Aufgaben

Konsument 1 und Konsument 2 besitzen jeweils eine Nutzenfunktion und . Angenommen beide konsumieren das gleiche Güterbündel (x.y)=(4,5). Welcher der beiden Konsumenten erfahren der ordinalen Nutzentheorie nach einen größeren Nutzen?

Konsument 1.
Beide erfahren einen gleich großen Nutzen.
Kann mit den vorliegenden Informationen nicht ermittelt werden.
Konsument 2.


Welche der folgenden Nutzenfunktionen stellen nicht die selben Präferenzen wie die folgende Nutzenfunktion dar:

.
.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U(x,y)'=x^{2} \sqrt{y}+5 } .
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U(x,y)'=2x^{2} \sqrt{y} } .


Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_{1} } Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_{3} } Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_{4} }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{1} } 3 7 2 0
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{2} } 2 1 2 -1
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{3} } 4 6 5 0

Angenommen ein Konsument kann sich zwischen drei Optionen entscheiden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{1} } , oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{3} } . Die Drei Optionen bingen je nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S_{i} } , {1,2,3,4}, einen unterschiedlichen Nutzen. Was kann auf Basis der in der Tabelle stehenden Nutzenwerte gesagt werden?

Die Option Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{2} } wird nie gegenüber den anderen beiden Optionen präferiert.
Es lässt sich aufgrund der ordinalen Nutzentheorie keine Aussage treffen.
Die Option Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{1} } wird immer gegenüber den beiden anderen Optionen präferiert.
Die Option Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{3} } wird immer gegenüber Optionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{1} } präferiert.