Intertemporale Entscheidung: Unterschied zwischen den Versionen
Okehne (Diskussion | Beiträge) |
Okehne (Diskussion | Beiträge) |
||
Zeile 46: | Zeile 46: | ||
[[Datei:InterSparer.png|350px|rahmenlos]] | [[Datei:InterSparer.png|350px|rahmenlos]] | ||
[[Datei:InterKredit.png|350px|rahmenlos]] | [[Datei:InterKredit.png|350px|rahmenlos]] | ||
+ | |||
+ | ==<math> \rho </math> und r </math>== | ||
+ | Das oben errechnete Optimum lässt sich zu <br> | ||
+ | <math> \frac{u'(C_0}{u'(C_1)}=\frac{1+r}{1+ \rho} </math> <br> | ||
+ | umstellen. In der neuen Gleichung lässt sich erkennen, wie der Haushalt bei unterschiedlichen DiskontierungsFaktoren und unterschiedlichen Zinssätzen konsumieren sollte. <br> | ||
+ | Für den Fall, dass <math> \rho </math> größer als der Zinssatz <math> r </math> ist, ist der Zähler kleiner als der Nenner und der Wert ist kleiner als eins. Bei Gleichheit ist demnach der Grenznutzen des Konsums in Periode 0 kleiner als der [[Marginale Sichtweise|Grenznutzen]] des Konsums in Periode 1. Ein größerer Grenznutzen bedeutet, dass eine zusätzliche Einheit einen größeren zusätzlichen Nutzen stiftet, als bei einem geringeren Grenznutzen. Bei einer identischen Nutzenfunktion bedeutet ein größerer Grenznutzen ein geringeres Konsumniveau. Deshalb gilt <math> \rho > r </math> => <math> C_0>C_1 </math>. Inhaltlich bedeutet ein größeres <math> \rho </math>, dass der Zinssatz als Vorteil des Sparens geringer ist, als die Kosten des Sparens (Konzumverzicht). <br> | ||
+ | Für den Fall <math> \rho =r </math>, ist die Gleichung erfüllt, wenn der Grenznutzen des Konsums in 0 und 1 gleich groß ist, wehslab gilt <math> \rho=r</math> => <math> C_0=C_1 </math>. <br> | ||
+ | Aus <math> \rho<r </math> folgt <math> C_0<C_1 </math>. | ||
==MC Fragen== | ==MC Fragen== |
Version vom 26. Juli 2023, 18:42 Uhr
Die Intertemporale Entscheidung betrachtet die Entscheidungsfindung eines Haushalts zwischen dem Konsum in mehreren Perioden. Für die OMIK dient ein Zwei-Perioden Modell, in dem in beiden Perioden jeweils ein Budget Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M } zur Verfügung steht.
Intertemporale Nutzenfunktion
Der Nutzen des Haushaltes ist von dem Konsumniveau der verschiedenen Perioden abhängig. Im Zwei-Perioden-Modell bedeutet das . Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_0 }
stellt das Konsumniveau in der derzeitigen Periode dar und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_1 }
das Konsumniveaus der darauffolgenden Periode. Der Nutzen aus dem Konsum in der späteren Periode wird mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho }
abdiskontiert. Der Diskontfaktor beschreibt die Neigung von Individuen den Nutzen zukünftiger Perioden schwächer zu bewerten, als dern Nutzen heutiger Perioden. Werden Konsumenten gefragt, ob sie lieber heute ein Mittagessen ausgegeben bekommen möchten oder lieber in 30 Jahren, entscheiden sich die meisten für ein heutiges Mittagessen. Der Diskontfaktor ist somit ein Hilfsmittel, um das Modell der Konsumentscheidung in der heutigen Periode realistischer zu gestalten.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U(C_0,C_1)=u(C_0)+\frac{u(C_1)}{1+\rho} }
,wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho < 1 }
Je größer Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho }
ist, desto stärker wird die Zukuft abdiskontiert und desto stärker ist die Präferenz für den Gegenwartskonsum. Der Grenznutzen ist positiv und abnehmend.
Intertemporale Budgetrestriktion
Die Intertemporale Budgetrestriktion beinhaltet alle Restriktionen über die verschienen Perioden hinweg. Der Haushalt hat in jeder Periode ein verfügbares Einkommen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_t }
.Existiert in dem Intertemporalen Modell ein Kapitalmarkt, hat der Haushalt die Möglichkeit einen Kredit aufzunehmen und damit Konsum in die heutige Periode zu verlagern oder zu sparen und somit einen Teil des Konsums in die nächtse Periode zu verschieben.
Kein Kapitalmarkt
Existiert kein Kapitalmarkt, kann der Haushalt nur das Vermögen konsumieren, das er in der jeweiligen Periode zur Verfügung hat. Die Nutzenmaximierung besteht in diesem Fall darin das gesamte Vermögen in der jeweiligen Periode zu konsumieren. Die Budgetrestriktion und Lösung der Maximierungsaufgabe lautet:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_1^*=M_1 }
Mit Kapitalmarkt
Der Haushalt hat in beiden Perioden ein Einkommen, das es aufgrund des Kapitalmarktes in eine andere Periode transferieren kann. Mit einem Kapitalmarkt hat der Haushalt somit in der ersten Periode mehr Entscheidungsmöglichkeiten. Neben dem vollständigen Konsum kann er auch einen Teil sparen oder durch einen Kredit Vermögen aus der Zukunft nutzen. Die Ausgaben des Konsums und die Summe, die gespart wird, muss gleich dem verfügbaren Einkommen sein. Spart ein Haushalt, ist die Sparsumme positiv, nimmt er ein Kredit auf, ist die Sparsumme negativ.
Periode 0: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Verm \ddot gen=Konsumausgaben+Sparsumme }
(i) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_o=p_0C_0+S }
In der zweiten Periode bleibt dem Haushalt nur der Konsum des gesamten Vermögens.
Periode 1: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Verm \ddot gen+verzinste\,Sparsumme=Konsumausgaben }
(ii) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_1+(1+r)S=p_1C_1 }
Zur Vereinfachung ist der Preis für ein Konsumgut auf 1 normiert und es existiert keine Inflatio damit gilt
(i) nach S umgestellt ergibt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S=M_o-C_0 }
In (ii) eingesetzt:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_1+(1+r)(M_0-C_0)=C_1 }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_1+(1+r)M_0=C_1+C_0(1+r) }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_0+\frac{M_1}{1+r}=C_0+\frac{C_1}{1+r} }
Das mit dem Zinssatz auf die heutige Periode abdiskontierte Vermögen aller Perioden muss gleich den mit dem Zinssatz auf die heutige Periode abdiskontierten Konsumausgaben sein. Oder anders formuliert: Der Present Value des Vermögens entspricht dem Present Value der Konsumausgaben.
Für eine grafische Darstellung der Budgetgeraden muss nach oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_1 }
umgestellt werden.
Die Budgetrestriktion gilt für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r \geq 0}
.
Der Ausstattungspunkt mit den gegebenen Einkommen der beiden Perioden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_0 }
und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_1 }
liegt auf der Budgetgerade (rechte Abbildung). Ausgehend von diesem Punkt kann der Haushalt entlang der Budgetgerade seinen Konsum zwischen den beiden Perioden verschieben. Steigt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_0 }
oder , verschiebt sich die Budgetgerade nach außen und es kann mehr Budget zwischen den Perioden aufgeteilt werden. Bei einem Zinssatz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r=0 }
verschiebt sie sich bei steigendem Einkommen parallel. Steigt der Zinssatz , wird die Budgetgerade steiler. Bei einem größeren Zinssatz ist der Present Value des Einkommens der späteren Periode geringer. Würde der Haushalt lediglich in Periode 0 konsumieren, kann er dies bei einem höheren Zinssatz auf einem niedrigeren Niveau. Der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_0}
-Achsenabschnitt verringert sich certeris paribus. Spart der Haushalt sein Buget jedoch vollständig, kann er bei einem steigenden Zinssatz nominal mehr Geld ausgeben als bei einem geringeren Zinssatz. Der -Achsenabschnitt steigt.
Intertemporale Nutzenmaximierung
Die Nutzenmaximierung bei der Intertemporalen Konsumentschidung funktioniert wie bei der Optimierung im Zwei-Güter-Modell. Grafisch liegt das Optimum im Tangentialpunkt der Indifferenzkurve und der intertemporalen Budgetgeraden.
Rechnerisch muss die Zielfunktion mit der Nebenbedingung maximiert werden. Eine Möglichkeit stellt das Langrangeverfahren dar. Die Lagrangefunktion lautet
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal{L} (C_0,C_1,\lambda)=U(C_0,C_1)+\lambda (M_0+\frac{M_1}{1+r}-C_0-\frac{C_1}{1+r}) }
Jenachdem ob der Nutzenmaximale Konsumpunkt rechts oder links vom Ausstattungspunkt ist, ist der Sparbetrag positiv oder negativ. In der ersten Abbildung liegt der Ausstattungspunkt rechts vom Haushaltsoptimum. Der Haushalt konsumiert im Optimum in der Periode 0 weniger, als er mit seinem Budget Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_0 }
könnte. Gleichzeitig konsumiert er in Periode 1 mehr als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_1 }
alleine ermöglicht. In der zweiten Abbildung liegt der Ausstattungspunkt links vom optimalen Bündel. Hier konsumiert der Haushalt durch einen Kredit in Periode 0 mehr, als das Budget Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_0 }
alleine ermöglicht.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho } und r </math>
Das oben errechnete Optimum lässt sich zu
umstellen. In der neuen Gleichung lässt sich erkennen, wie der Haushalt bei unterschiedlichen DiskontierungsFaktoren und unterschiedlichen Zinssätzen konsumieren sollte.
Für den Fall, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho }
größer als der Zinssatz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r }
ist, ist der Zähler kleiner als der Nenner und der Wert ist kleiner als eins. Bei Gleichheit ist demnach der Grenznutzen des Konsums in Periode 0 kleiner als der Grenznutzen des Konsums in Periode 1. Ein größerer Grenznutzen bedeutet, dass eine zusätzliche Einheit einen größeren zusätzlichen Nutzen stiftet, als bei einem geringeren Grenznutzen. Bei einer identischen Nutzenfunktion bedeutet ein größerer Grenznutzen ein geringeres Konsumniveau. Deshalb gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho > r }
=> Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_0>C_1 }
. Inhaltlich bedeutet ein größeres Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho }
, dass der Zinssatz als Vorteil des Sparens geringer ist, als die Kosten des Sparens (Konzumverzicht).
Für den Fall , ist die Gleichung erfüllt, wenn der Grenznutzen des Konsums in 0 und 1 gleich groß ist, wehslab gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho=r}
=> Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_0=C_1 }
.
Aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho<r }
folgt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_0<C_1 }
.