Lagrange: Unterschied zwischen den Versionen
Zeile 6: | Zeile 6: | ||
In der Gesellschaft treten häufig Fragestellungen auf, wie ein Haushalt den Konsum so wählt, dass der Nutzen möglichst groß ist. Es ist ebenfalls eine Fragestellung möglich, in der der Kostenminimale Produktionspunkt eines Unternehmens gesucht ist. Im Weiteren soll an vielen Stellen speziell auf das Maximierungsproblem eingegangen werden. <br> | In der Gesellschaft treten häufig Fragestellungen auf, wie ein Haushalt den Konsum so wählt, dass der Nutzen möglichst groß ist. Es ist ebenfalls eine Fragestellung möglich, in der der Kostenminimale Produktionspunkt eines Unternehmens gesucht ist. Im Weiteren soll an vielen Stellen speziell auf das Maximierungsproblem eingegangen werden. <br> | ||
Im Falle der Nutzenmaxinierung soll der Nutzen möglichst groß sein. In einem Beispiel hat ein Haushalt die Möglichkeit Güter <math> x_1 </math> und <math> x_2 </math> zu konsumieren. Der Haushalt muss dementsprechend sein Nutzen in Bezug auf den Konsum von <math> x_1 </math> und <math> x_2 </math> maximieren: <math> \max\limits_{x_1,x_2}U(x_1,x_2) </math> <br> | Im Falle der Nutzenmaxinierung soll der Nutzen möglichst groß sein. In einem Beispiel hat ein Haushalt die Möglichkeit Güter <math> x_1 </math> und <math> x_2 </math> zu konsumieren. Der Haushalt muss dementsprechend sein Nutzen in Bezug auf den Konsum von <math> x_1 </math> und <math> x_2 </math> maximieren: <math> \max\limits_{x_1,x_2}U(x_1,x_2) </math> <br> | ||
− | Unter der Annahme der [[Axiome der Nutzentheorie#Monotonie|Monotonie]] ("Mehr ist besser"), maximiert der Haushalt seinen Nutzen, indem er möglichst viel von <math> x_1 </math> und <math> x_2 </math> konsumiert. Kann ein Haushalt sehr viel, wenn nicht sogar unendlich viel, von beiden Gütern konsumiert und Monotonie gilt, ist die Maximierungsaufgabe schon gelöst. In den meisten Fällen ist dies jedoch nicht möglich. Zum einen existieren nicht unendlich viele Einheiten der Güter (dies spielt in der [[Edgeworth-Box]] eine große Rolle) und zum anderen hat ein Haushalt auch nicht | + | Unter der Annahme der [[Axiome der Nutzentheorie#Monotonie|Monotonie]] ("Mehr ist besser"), maximiert der Haushalt seinen Nutzen, indem er möglichst viel von <math> x_1 </math> und <math> x_2 </math> konsumiert. Kann ein Haushalt sehr viel, wenn nicht sogar unendlich viel, von beiden Gütern konsumiert und Monotonie gilt, ist die Maximierungsaufgabe schon gelöst. In den meisten Fällen ist dies jedoch nicht möglich. Zum einen existieren nicht unendlich viele Einheiten der Güter (dies spielt in der [[Edgeworth-Box]] eine große Rolle) und zum anderen hat ein Haushalt auch nicht das Geld zur Verfügung, um sich unendlich viele Güter leisten zu können. Im Normalfall unterliegen Haushalte dementsprechend einer [[Budgetrestriktion und Budgetgerade|Budgetrestriktion]]. Die Budgetrestriktion ist in <math> p_1x_1+p_2x_2=E </math> beschrieben, wobei E das Budget darstellt. Die eigentliche Maximierungsaufgabe besteht dementsprechend darin den Nutzen zu maximieren und das Budget einzuhalten. (u.d.NB.=unter der Nebenbedingung)<br> |
<math> \max\limits_{x_1,x_2}U(x_1,x_2) </math> u.d.NB <math> p_1x_1+p_2x_2=E </math> | <math> \max\limits_{x_1,x_2}U(x_1,x_2) </math> u.d.NB <math> p_1x_1+p_2x_2=E </math> | ||
Version vom 13. Oktober 2023, 22:28 Uhr
Das Langrangeverfahren ist eine Möglichkeit Funktionen mit einer Nebenbedingung zu maximieren oder zu minimieren. In diesem Verfahren wird davon ausgegangen, dass die Nebenbedingung mit Gleichheit erfüllt werden muss.
Das Problem
In der Gesellschaft treten häufig Fragestellungen auf, wie ein Haushalt den Konsum so wählt, dass der Nutzen möglichst groß ist. Es ist ebenfalls eine Fragestellung möglich, in der der Kostenminimale Produktionspunkt eines Unternehmens gesucht ist. Im Weiteren soll an vielen Stellen speziell auf das Maximierungsproblem eingegangen werden.
Im Falle der Nutzenmaxinierung soll der Nutzen möglichst groß sein. In einem Beispiel hat ein Haushalt die Möglichkeit Güter und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2 }
zu konsumieren. Der Haushalt muss dementsprechend sein Nutzen in Bezug auf den Konsum von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1 }
und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2 }
maximieren:
Unter der Annahme der Monotonie ("Mehr ist besser"), maximiert der Haushalt seinen Nutzen, indem er möglichst viel von und konsumiert. Kann ein Haushalt sehr viel, wenn nicht sogar unendlich viel, von beiden Gütern konsumiert und Monotonie gilt, ist die Maximierungsaufgabe schon gelöst. In den meisten Fällen ist dies jedoch nicht möglich. Zum einen existieren nicht unendlich viele Einheiten der Güter (dies spielt in der Edgeworth-Box eine große Rolle) und zum anderen hat ein Haushalt auch nicht das Geld zur Verfügung, um sich unendlich viele Güter leisten zu können. Im Normalfall unterliegen Haushalte dementsprechend einer Budgetrestriktion. Die Budgetrestriktion ist in beschrieben, wobei E das Budget darstellt. Die eigentliche Maximierungsaufgabe besteht dementsprechend darin den Nutzen zu maximieren und das Budget einzuhalten. (u.d.NB.=unter der Nebenbedingung)
u.d.NB
Langrangefunktion
Die Lagrangefunktion wird aufgestellt, indem von der Nutzenfunktion ein zweiter Term abgezogen wird. Der zweite Term besteht aus der Budgetrestriktion, die nach null umgestellt und mit einer Variablen (dem Langrange Multiplikator) multipliziert wird. Die Langrangefunktion ist damit abhängig von , und :
Für das Ergebnis vom optimalen und ist es irrelevant, ob vor dem Komma ein + oder ein - steht. Es ist ebenfalls irrelevant, ob in der Nebenbedingung der linke oder der rechte Teil auf die andere Seite gebracht wird. Für die Bedeutung von Lambda hat dies jedoch durchaus Relevanz. Um allein das optimale Konsumniveau von und auszurechnen, muss formal auf die genannten Dinge keine Rücksicht genommen werden. Um zu deuten, gilt es jedoch die obige Notation beizubehalten.
FOC
Die Langrangefunktion beschreibt das Maximierungsproblem in einer Art, die aufgrund des nur schwer grafisch vorstellbar ist. Die Vorgehensweise ist im ersten Schritt jedoch ähnlich zu einem simplen univariaten Maximierungsproblem. Es muss die Funktion nach den Variablen abgeleitet werden, für die der Nutzen maximiert werden soll. Die erste Ableitung muss gleich null sein (FOC=First order condition). Zudem muss weitergehend beachtet werden, dass die Budgetrestriktion eingehalten werden muss. Die FOCs und die nebenbedingung stellen ein Gleichungssystem dar, das es zu lösen gilt.
Lösung des Maximierungsproblems
Die First order Conditions stellen ein Gleichungsystem dar. Es existieren drei unbekannte (, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2 }
und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda }
) und drei Gleichungen. Zum Lösen des Systems gibt es verschiedene Wege. Eine der ersten beiden Gleichungen kann nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda }
umgestellt und in die andere der oberen beiden Gleichungen substituiert werden. Es ist auch möglich die oberen beiden Gleichungen beide nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda }
umzustellen und anschließend gleichzusetzen. Es kann auch direkt die erste durch die zweite Gleichung dividiert werden.
Als Beispiel sollen die ersten beiden Gleichungen nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda }
ugestellt werden. Es ergibt sich:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda=\frac{U(x_1,x_2)}{\part x_2}:p_2 }
Da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda=\lambda }
ergibt sich:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{U(x_1,x_2)}{\part x_1}:p_1=\frac{U(x_1,x_2)}{\part x_2}:p_2 }
oder weiter umgestellt
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\frac{U(x_1,x_2)}{\part x_1}}{\frac{U(x_1,x_2)}{\part x_2}}=\frac{p_1}{p_2} }
Die linke Seite des Ausdrucks entspricht der GRS. Dieser Ausdruck kann wiederum nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1 }
oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2 }
umgestellt werden, welche beide im Grenznutzen stecken. Es ergibt sich beispielweise ein Ausdruck, , der abhängig von der anderen variable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2 }
ist (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1(x_2)=...}
). Dieser lässt sich in die Budgetrestriktion einsetzen, die vorher Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1 }
und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2 }
beinhaltete. Nach der Substitution ist in der Budgetrestriktion nur noch eine Unbekannte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2 }
vorhanden, nach der umgestellt werden kann. Es ergibt sich beispielweise mit der Nutzenfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U(x_1,x_2)=x_1x_2 }
folgende Gleichung:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{x_2}{x_1}=\frac{p_1}{p_2} }
umgestellt nach ergibt sich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2=\frac{p_1}{p_2}x_1 }
.
Dieser Ausdruck kann in die Budgetrestriktion für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2 }
eingesetzt werden:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_1x_1+p_2(\frac{p_1}{p_2}x_1)=E }
Nun kann für eine Lösung nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^*_1 }
umgestellt werden. Das Ergebnis eingesetzt in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2=\frac{p_1}{p_2}x_1 }
ergibt das optimale Konsumniveau von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^*_2 }
.
Die Bedeutung von Lambda
Die Langrangefunktion unterstellt, dass für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda }
die Nebenbedingung erfüllt ist. Sie sucht also Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^*_1 }
und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^*_2 }
, für die das Budget nicht gesprengt wird. Dafür führt das Langrangeverfahren den Lagrange Mutiplikator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda }
als eine Art Schattenpeis ein, den der Haushalt zahlen muss, wenn das Budget nicht eingehalten wird. Dies hat auch den grund, warum für die richtige Interpretation von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda }
die Notation korrekt ist. Der Schattenpreis ist positiv. Sind die Konsumausgaben dementsprechend größer als das Budget, gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_1x_1+p_2x_2>E }
und dementsprechend Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_1x_1+p_2x_2-E>0 }
. Da vor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda }
eine negatives Vorzeichen steht, wird von dem Nutzen etwas abgezogen, wenn die Konsumausgaben größer sind als das Budget. Gleichzeitig wird zum Nutzen etwas addiert, wenn die Konsumausgaben kleiner sind als das Budget. Im Haushaltsoptimum ist der Schattenpreis so gewählt, dass die Budgetrestriktion mit Gleichheit erfüllt ist. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda }
lässt sich berechnen, indem die Ausgerechneten optimalen Konsumniveus in einer der beiden FOC Gleichungen eingesetzt und nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda }
umgestellt wird.
Es lässt sich außerdem zeigen, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda }
der Grenznutzen des Einkommens ist. Steigt das Einkommen, steigt auch das Nutzenniveau im Optimum um Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda }
Einheiten. (Für den Beweis siehe [[1]])
MC Fragen