Cobb-Douglas-Funktionen
Cobb-Douglas-Funktionen sind Funktionen, die häufig als Nutzenfunktionen oder Produktionsfunktionen genutzt werden.
Aufbau der Cobb-Douglas-Funktionen
Cobb-Douglas-Funktionen haben einen typischen Aufbau, bei dem Variablen multiplikativ miteinander verknüpft sind und einen Exponenten haben.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z(x_1,...,x_n)=b\prod\limits_{i = 0}^{n}x_i^{\alpha_i} }
mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b>0 }
Für die Anwendung in der Mikro I genügen zwei Variablen. Zudem kann Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle b }
auch den Wert 1 annehmen, sodass sich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z(x_1,x_2)=x_1^{\alpha}x_2^{\beta} }
ergibt. Dies kann dreidimensional dargestellt werden.
Charakterlich ist vorallem, dass die Variablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1 }
und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2 }
miteinander multipliziert werden. Nimmt einer der beiden Werte null an, ist der z Wert null.
Skalenerträge
Cobb-Douglas-Produktionsfunktionen haben den Vorteil, dass sie aufgrund ihres Aufbaus leicht auf Skalenerträge untersucht werden können. Für die Untersuchung auf Skalenerträge werden alle Inputfaktoren mit einem allgemeinen Faktor multipliziert. Sei die Produktionsfunktion beispielsweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(K,L)=K^{\alpha}L^{\beta} }
, so wird hieraus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(\lambda K, \lambda L)=(\lambda K)^{alpha}(\lambda L)^{\beta}=\lambda^{\alpha}K^{\alpha}\lambda^{beta}L^{beta}=\lambda^{\alpha+\beta}K^{\alpha}L^{\beta} }
. Dieser Ausdruck wird mit verglichen. Es fällt auf, dass die beiden Ausdrücke identisch sind mit der Ausnahme des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda^{\alpha+\beta}}
Ausdrucks. In dem einen Fall ist der Exponent und in dem anderen Fall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1 }
. Ist die Summer der beiden Exponenten größer als 1 gilt
Es gilt:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha + \beta >1 \Rightarrow }
steigende Skalenerträge
konstante Skalenerträge
fallende Skalenerträge
Produktionselastizität
Die Exponenten der Cobb-Douglas Funktionen haben eine Bedeutung und sagen etwas über die dazugehörigen unabhängigen Variablen aus. Dies soll anhand einer Produktionsfunktion gezeigt werden. Hierfür soll untersucht werden, wie sich der Output prozentual verändert, wenn sich einer der beiden Inputfaktoren prozentual verändert. Im ersten Fall soll die Veränderung in K stattfinden.
mit
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_K=\frac{\part Y}{\part K}\frac{K}{Y} }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_K=\alpha K^0L^0 }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma_K=\alpha }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Leftrightarrow }
Die Produktionselastizität, also die Frage wie stark sich der Output prozentual verändert, wenn sich einer der Inputfaktoren prozentual verändert lässt sich durch den jeweiligen Exponenten beantworten. Eine ähnliche Intuition gilt bei Cobb-Douglas-Nutzenfunktionen.
Maximum mit Nebenbedingung
Cobb-Douglas-Funktionen haben den Vorteil, dass sich aufgrund ihrer For allgemein eine Lösung für das Haushaltsoptimum bzw. das Produktionsoptimum aufstellen lässt. Hierfür soll eine Cobb Douglas-Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(x,y)=x^{\alpha}y^{\beta} }
mit der Nebenbedingung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_xx+p_y=b }
. Zum Maximieren lässt sich die Lagrange Funktion aufstellen, oder es wird direkt die GRS bzw GRTS genutzt.
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\frac{\part F}{\part x}}{\frac{\part F}{\part y}}=\frac{p_x}{p_y} }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\alpha x^{\alpha -1}y^{\beta}}{\beta x^{\alpha}y^{\beta -1}}=\frac{p_x}{p_y} }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\alpha}{\beta}\frac{y}{x}=\frac{p_x}{p_y} }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y=\frac{p_x}{p_y}\frac{\beta}{\alpha}x }
In die Nebenbedinung eingesetzt:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_xx+p_y(\frac{p_x}{p_y}\frac{\beta}{\alpha}x)=b }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_xx(\frac{\alpha +\beta}{\alpha})=b }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^*=\frac{\alpha}{\alpha +\beta}\frac{E}{p_x} }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Leftrightarrow }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y^*=\frac{\beta}{\alpha +\beta}\frac{E}{p_y} }