Inputeffizienz, Konsumeffizienz und Outputregel
Der erste Hauptsatz der Wohlfahrtsökonomik besagt, dass alle Konkurrenzmarktgleichgewichte pareto-effizient sind. Dies kann mittels Edgeworth-Box für den Handel auf der Konsumentenseite gezeigt werden. Im Weiteren soll gezeigt werden, dass der erste Hauptsatz auch für die Produktion im Wettbewerbsgleichgewicht, den Input in Wettbewerbsgleichgewichten, die Allokation der Güter und den Output in Wettbewerbsgleichgewichten gilt.
Effiziente Produktion
Inputeffizienz
Effiziente Allokation der Güter
Datei:Transformationskurve1.png|400px|links
Die Herleitungen der effizienten Produktion/Inputeffizienz zeigt, dass eine Volkswirtschaft in diesem Modell vor dem Trade-off zwischen der Produktion von Gut Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_1 }
und der Produktion von Gut Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_2 }
steht. Soll viel von dem Gut Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_1 }
produziert werden, kann weniger von Gut Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_2 }
produziert werden. Die beiden Güter stehen in einem Austauschverhältnis zueinander, dass verschiedene Ausmaße annehmen kann. Das Verhältnis kann beispielsweise linear sein. In diesem Fall kann für jedes Gut weniger immer eine konstant bleibende Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_2 }
mehr produziert werden. Es sind auch Austauschverhältnisse möglich, die nicht linear sind. In diesem Fall kommt es immer darauf an wie viele Einheiten von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_2 }
mehr produziert werden, wie viele bereits produziert sind. Dieses Phänomen hat starke Bezüge zum abnehmenden Grenznutzen. Hier stiftet eine zusätzliche Einheit einen immer kleiner werdenden Nutzen, je mehr von diesem Gut bereits konsumiert wird. Im Kontext der Produktion bedeutet dies, dass immer weniger von einem Gut Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_2 }
durch ein eingespartes Gut Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_1 }
produziert werden kann, je mehr von diesem Gut bereits produziert wird. Ein solcher Fall ist in der Abbildung links dargestellt.
</math>
Die Ausführungen oben zeigen, wie ein Unternehmen (oder eine ganze Industrie) zwischen der Produktion zweier Güter wählen kann. Wie einfach der Wechsel von Produktion des Gutes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2 }
zu Gut Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1 }
ist zeigt sich in der GRT. Jedoch stellt sich weiterhin die Frage, welche Aufteilung optimal ist. Recht intuitiv unter den Standradannehmen ist, dass die optimale Menge auf der Tranformationskurve liegt. Ein Unternehmen wird sehr wahrscheinlich so viele Güter wie mölglich produzieren und damit verkaufen wollen. Dass es jedoch auch für die Konsumenten in einer gesellschaftlichen Sichtweise optimal ist, wenn das Unternehmen auf der Transformationskurve produziert, zeigt die weitere Ausführung. Hierfür sollen Indifferenzkurven aus gesellschaftlicher Sicht modelliert werden. Unter den Annahmen über Präferenzen ist eine hohe Konsummenge besser, als eine leicht gerinigere. Die Gesellschaft versucht also als ganzes auf eine möglichst hohe Indifferenzkurve zu gelangen. Dise liegt im Tangentialpunkt der Indifferenzkurve mit der Transformationskurve. Es muss also gelten