Lagrange

Aus Mikroökonomie 1
Zur Navigation springen Zur Suche springen

Langrangefunktion

Die Lagrangefunktion wird aufgestellt, indem von der Nutzenfunktion ein zweiter Term abgezogen wird. Der zweite Term besteht aus der Budgetrestriktion, die nach null umgestellt und mit einer Variablen (dem Langrange Multiplikator) multipliziert wird. Die Langrangefunktion ist damit abhängig von , und :

 (I) 
(II)

Für die richtige Interpretation des Ergebnisses ist es durchaus relevant, ob vor dem ein + oder ein - steht. Merkhilfe bietet hier die Bedeutung von Lambda. Streng genommen ist die Budgetrestriktion eine Ungleichung. Es ist durchaus möglich weniger als das vollständige Budget auszugeben, daher lautet die Restriktion . Umgestellt nach null ergibt sich entweder

 (i) 
oder
(ii)

In beiden Fällen der Budgetrestriktion gilt die gleiche Intuition. Wenn der Haushalt mehr ausgibt als er mit seinem Budget E könnte, soll er dafür bestraft werden. Der Nutzen, gegeben durch die Nutzenfunktion), muss sich verringern, wenn er mehr ausgibt, als er kann. Im Fall (i) ist dies der Fall, wenn die Ungleichung positiv ist. Da immer positiv ist, muss vor das ein negatives Vorzeichen. Analog gilt die Intuition bei Fall (ii).