Gradientenmethode
Die Gradientenmethode ist eine Methode zur Bestimmung eines Maximums/Minimus mit einer Nebenbedingung. Hierfür wird das Skalarprodukt zweier Vektoren gebildet. Der erste Vektor ist die Richtung der Budgetgeraden und der andere Vektor ist der Gradient des Nutzenfunktion, welcher in Richtung des steilsten Anstiegs zeigt. Die Gradientenmethode ist neben dem Lagrangeverfahren eine weitere Möglichkeit zur Bestimmung eines Tangentialpunktes.
Gradient
Der Gradient ist ein Vektor, welcher in Richtung des steilsten Anstiegs zeigt. Er lässt sich bilden, indem eine multivariate Funktion partiell abgeleitet wird. Im Falle einer Nutzenfunktion mit zwei Konsumgütern Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1 }
und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2 }
lässt sich der Gradient wie folgt bestimmen:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla =(\partial U(x_1,x_2)/\partial x_1, \quad \partial U(x_1,x_2)/\partial x_2)^T }
Je nach Konsumpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_1,x_2) }
zeigt der Gradient in eine andere Richtung. Die partielle Ableitung nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1 }
eingesetzt an dem jeweiligen Punkt bestimmt, wie weit der Vektor in die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1 }
-Richtung geht. Die partielle Ableitung nach bestimmt für den jeweiligen Punkt, wie weit der Vektor in die -Richtung verläuft.
Vektor der Budgetgeraden
Die Budgetgerade lässt sich in einen Vektor umschreiben. Für die -Richtung lässt sich beispielsweise die Differenz von und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^{max} }
nehmen. Für die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2 }
-Richtung kann wiederum die Differenz zwischen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2^{max} }
und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2=0 }
herangezogen werden.
Es ergibt sich:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{v}=(x_1^{max}-0, \quad 0-x_2^{max})^T=(x_1^{max}, \quad -x_2^{max})^T }
Der Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{v} }
lässt sich in der Grafik unten erkennen. Es gilt zu beachten, dass der Vektor, anders als der Gradient, nicht variabel in und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2 }
ist.
Tangentialpunkt
Das Skalarprodukt zweier Vektoren ist gleich null, wenn die zwei Vektoren orthogonal zueinander verlaufen. Exakt diese Eigenschaft liegt im Tangentianlpunkt vor. Der Gradient verläuft im Tangentialpunkt der Indifferenzkurve und der Budgetgeraden orthogonal zu dem berechneten Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{v} }
Die Tangentialbedingung lässt sich somit auch durch das Skalarprodukt herleiten:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla U(x_1,x_2)^T \cdot \vec{v} \stackrel{!}{=}0 }
Die daraus resultierende Relation zwischen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1 }
und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2 }
ist dieselbe, wie bei dem Lagrangeverfahren und kann in die Budgetrestriktion eingesetzt werden, um die optimale Nachfrage zu erhalten.
Beispiel
Die Nutzenfunktion lautet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U(x_1,x_2)=x_1 \cdot x_2 } . Die Preise lauten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_1=2 } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p_2=4 } . Insgesamt steht ein Budget von 20 Euro zur Verfügung
Gradient
Der Gradient lautet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nabla =(x_2, \quad x_1) ^T }
Budgetvektor
Der Budgetvektor lautet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{v}=(\frac{20}{2}, \quad -\frac{20}{4})^T=(10,\quad -5)^T }
Tangentialpunkt
Für den Tangentialpunkt muss das Skalarprodukt null sein: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_2, \quad x_1) \cdot (10,\quad -5)^T\stackrel{!}{=}0 }
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 10x_2-5x_1=0 }
Die Tangentialbedingung lautet demenstprechend Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1=2x_2 }
Optimale Nachfrage
Die Tangentialbedingung kann in die Budgetrestriktion eingesetzt werden
Die optimale Nachfrage lautet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_1^*,x_2^*)=(5, \quad 2.5) }